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Tsirelson bounds in Bell nonlocality

• quantum correlations between distant events:

𝑝(𝑎, 𝑏|𝑥, 𝑦) = ⟨𝜓|𝑀𝑎|𝑥𝑁𝑏|𝑦|𝜓⟩

• CHSH inequality:

ℐCHSH ≔ ∑
𝑎,𝑏,𝑥,𝑦

(−1)𝑎+𝑏+𝑥𝑦𝑝(𝑎, 𝑏|𝑥, 𝑦) ≤ 2

• Tsirelson’s bound: ℐCHSH = 2
√

2 is the maximal CHSH
correlation permitted by quantum mechanics;

• general method: Navascues-Pironio-Acin (NPA)
hierarchy.

Brunner, Cavalcanti, Pironio, Scarani & Wehner (2014)
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Bell-like inequalities for causality

• free choice
• closed laboratories
• global causal structure

the observed statistics is a
causal probability
distribution:

𝑝(𝑎1, ⋯, 𝑎𝑁 | 𝑥1, ⋯, 𝑥𝑁)

Oreshkov, Costa & Brukner
(2012)

• settings ⃗𝑥 = (𝑥1, ⋯, 𝑥𝑁)
• outcomes ⃗𝑎 = (𝑎1, ⋯, 𝑎𝑁)
• real coefficients (𝛼𝑎⃗,𝑥⃗)
• an 𝑁 -party correlation

ℐ = ∑
𝑎⃗,𝑥⃗

𝛼𝑎⃗,𝑥⃗ 𝑝( ⃗𝑎 | ⃗𝑥)

Causal inequalities

𝑝( ⃗𝑎 | ⃗𝑥) is causal ⟹ ℐ ≤ 𝛽
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Guess Your Neighbor’s Input (GYNI)

• GYNI game [Almeida et al (2010)]: Alice/Bob generates a
random bit 𝑥1/𝑥2, the goal is that each player makes a
correct guess of the other’s bit.

• two-party causal probability distribution: random mixture of
𝐵 ⋠ 𝐴 𝑝𝐴(𝑎1 | 𝑥1, 𝑥2) = 𝑝𝐴(𝑎1 | 𝑥1, 𝑥′

2), ∀𝑥1, 𝑥2, 𝑥′
2, 𝑎1

𝐴 ⋠ 𝐵 𝑝𝐵(𝑎2 | 𝑥1, 𝑥2) = 𝑝𝐵(𝑎2 | 𝑥′
1, 𝑥2), ∀𝑥1, 𝑥2, 𝑥′

1, 𝑎2.

• Causal probability distributions form a convex polytope.

Branciard, Araújo, Feix, Costa and Brukner (2016)
Oreshkov and Giarmatzi (2016)

AAbbott, Giarmatzi, Costa & Branciard (2016)

• GYNI correlation

ℐGYNI ≔ Pr(𝑎1 = 𝑥2, 𝑎2 = 𝑥1)

causal inequality

ℐGYNI ≤
1
2
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Local quantum theory and process matrices

• drop the assumption of a
global causal structure;

• keep logical consistency
with local quantum
operations:

𝑝( ⃗𝑎) = 𝒮(ℳ(1)
𝑎1

, ⋯, ℳ(𝑁)
𝑎𝑁

) Chiribella, D'Ariano, Perinotti &
Valiron (2009)

Oreshkov, Costa & Brukner (2012)

Choi-Jamiołkowski
isomorphism:

ℳ(𝑖)
𝑎𝑖

⟺ 𝑀 (𝑖)
𝑎𝑖

𝒮 ⟺ 𝑆 (process matrix)

𝑝( ⃗𝑎) = Tr[𝑆T ⨂
𝑁

𝑖=1
𝑀 (𝑖)

𝑎𝑖
]

Process matrices: 𝑆 ≥ 0; 𝑆 in the dual affine set of Choi operators of no-signalling
channels.
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Quantum correlations with Indefinite Causal Order

Violations of causal inequalities
• Branciard et al (2016): numerical value

calculated with a process matrix on 5-
dimensional quantum systems

ℐGYNI = 0.6218 >
1
2

• Kunjwal and Oreshkov (2023): no perfect win
for GYNI.

What are the maximum violations (ICO bounds)
of causal inequalities?

Research gap
• Brukner (2015): maximum OCB correlation

[Oreshkov, Costa & Brukner (2012)] with a
restricted set of local quantum operations;

• Branciard et al (2016): see-saw optimization
for correlations realized in fixed-dimensional
systems;

• Bavaresco et al (2019): constraints for GYNI
correlation realized in finite-dimensional
systems (trivial for infinite dimensional
systems);
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The optimization problem for ICO bounds

ℐICO = sup
𝒮

sup
(ℳ(𝑖)

𝑎𝑖|𝑥𝑖
)
𝒮(∑

𝑎⃗,𝑥⃗
𝛼𝑎⃗,𝑥⃗ ⨂

𝑁

𝑖=1
ℳ(𝑖)

𝑎𝑖|𝑥𝑖
)

• 𝒮: quantum process (process matrix);

• ℳ(𝑖)
𝑎𝑖|𝑥𝑖

: instruments;

• 𝛼𝑎⃗,𝑥⃗: coefficients of the correlation
function

ℐ = ∑
𝑎⃗,𝑥⃗

𝛼𝑎⃗,𝑥⃗ 𝑝( ⃗𝑎 | ⃗𝑥)

Challenges

1. dimensions of quantum systems
not fixed;

2. complex affine constraints for
process matrices.
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Our method: single-trigger SDP relaxation

• For single-trigger correlations, ICO bounds
can be saturated by a canonical choice of
instrument

ℐICO
single-trigger = max

𝒮
𝒮(∑

𝑎⃗,𝑥⃗
𝛼𝑎⃗,𝑥⃗ ⨂

𝑁

𝑖=1
ℳ(𝑖)★

𝑎𝑖|𝑥𝑖
)

• For an arbitrary correlation ℐ, decompose it
into a sum of single-trigger correlations:

ℐ = ∑𝑗 ℐ𝑗

• The optimal upper bound can be
expressed as a semidefinite
program (SDP).

SDP relaxation

ℐ ≤ min
{ℐ𝑗}

{∑
𝑗

ℐICO
𝑗 }
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Single-trigger correlations

A correlation ℐ = ∑𝑎⃗,𝑥⃗ 𝛼𝑎⃗,𝑥⃗ 𝑝( ⃗𝑎 | ⃗𝑥)

is single-trigger if

for every party 𝑖, there exists a
special setting (the trigger) 𝜉𝑖 such
that

𝑥𝑖 ≠ 𝜉𝑖 ⟹ 𝛼𝑎⃗,𝑥⃗ is independent of 𝑎𝑖

Two-party case

∀𝑎1, 𝑎′
1, 𝑎2, 𝑎′

2, 𝑥1, 𝑥2

𝑥1 ≠ 𝜉1 ⟹ 𝛼𝑎1,𝑎2,𝑥1,𝑥2
= 𝛼𝑎′

1,𝑎2,𝑥1,𝑥2

𝑥2 ≠ 𝜉2 ⟹ 𝛼𝑎1,𝑎2,𝑥1,𝑥2
= 𝛼𝑎1,𝑎′

2,𝑥1,𝑥2
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Example: Lazy Guess Your Neighbor’s Input (LGYNI)

• [Branciard et al (2016)] Alice/Bob generates a random bit 𝑥1/𝑥2, and they guess the
other player’s setting only when their own setting is 1:

ℐLGYNI ≔ Pr(𝑥1(𝑎1 ⊕ 𝑥2) = 0, 𝑥2(𝑎2 ⊕ 𝑥1) = 0).

• causal inequality: ℐLGYNI ≤ 3
4 .

• triggers: 𝜉1 = 𝜉2 = 1.

Pr(𝑥1(𝑎1 ⊕ 𝑥2) = 0, 𝑥2(𝑎2 ⊕ 𝑥1) = 0 | 𝑥1 = 0, 𝑥2)
= Pr(𝑥2(𝑎2 ⊕ 𝑥1) = 0 | 𝑥1 = 0, 𝑥2)
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Canonical instrument ★

The canonical local operations, with 𝜉1, 𝜉2, …, 𝜉𝑁  being the triggers

• Encode the setting in an auxiliary system:

ℳ(𝑖)★
𝑎𝑖|𝑥𝑖

= 𝒩(𝑖)★
𝑎𝑖|𝑥𝑖

⊗ |𝑥𝑖⟩⟨𝑥𝑖|aux

• If 𝑥𝑖 = 𝜉𝑖, measure in computational basis, otherwise do not perform
measurement and generate a random outcome:

𝒩(𝑖)★
𝑎𝑖|𝑥𝑖

(𝜌) ≔
⎩{
⎨
{⎧|𝑎𝑖⟩⟨𝑎𝑖|𝜌|𝑎𝑖⟩⟨𝑎𝑖| if 𝑥𝑖 = 𝜉𝑖

1
𝑚𝑖

𝜌 otherwise (random outcome)
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Explicit formulas

• performance operator Ω★ ≔ ∑𝑎⃗,𝑥⃗ 𝛼𝑎⃗,𝑥⃗ ⨂𝑁
𝑖=1 𝑀 (𝑖)★

𝑎𝑖|𝑥𝑖

• in terms of max relative entropy distance (w.l.o.g., assume Ω★ ≥ 0)

ℐICO
single-trigger = 2𝐷max(Ω★ ‖ NoSig)

• expressed through SDP:

maximize Tr(𝑆Ω★)
subject to 𝑆 ∈ DualAff(NoSig)

𝑆 ≥ 0

minimize 𝜂
subject to 𝐶 ∈ Aff(NoSig)

𝜂𝐶 ≥ Ω★
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Sketch of the proof of single-trigger ICO bounds

ℐ(𝕄): the range of a correlation ℐ generated by arbitrary process matrices and a
restricted set 𝕄 of instruments.
𝕄1 ≔ {all instruments}
𝕄2 ≔ {labelled projective instruments}
𝕄3 ≔ {single-trigger instruments}
𝕄4 ≔ {the canonical instrument}

Step 1 ℐ(𝕄1) = ℐ(𝕄2);

Step 2 (single-trigger)

max ℐ(𝕄2) = max ℐ(𝕄3).

Step 3 ℐ(𝕄3) = ℐ(𝕄4).
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Step 1: reduction to labelled projective instruments

• unitary realization (Ozawa’s dilation
theorem)

• labelled projective instruments:

𝒫(𝑖)
𝑎𝑖|𝑥𝑖

⊗ |𝑥𝑖⟩⟨𝑥𝑖|aux

where (𝒫(𝑖)
𝑎𝑖|𝑥𝑖

)
𝑎𝑖

 is an equal-rank

projective measurement for every
setting.
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Step 2: reduction to single-trigger instruments

• single-trigger instruments (unitary for non-trigger settings):

ℳ(𝑖)
𝑎𝑖|𝑥𝑖

(𝜌) =
⎩{
⎨
{⎧𝑃 (𝑖)

𝑎𝑖|𝜉𝑖
𝜌𝑃 (𝑖)

𝑎𝑖|𝜉𝑖
⊗ |𝜉𝑖⟩⟨𝜉𝑖|aux  if 𝑥𝑖 = 𝜉𝑖

1
𝑚𝑖

𝑊 (𝑖)
𝑥𝑖

𝜌𝑊 (𝑖)†
𝑥𝑖

⊗ |𝑥𝑖⟩⟨𝑥𝑖|aux otherwise

• the value of a single-trigger correlation is unchanged when discarding the
outcomes for non-trigger settings;

• a projective measurement followed by discarding the outcome is equivalent to a
random unitary channel.
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Step 3: reduction to the canonical instrument

• Single-trigger instruments can be
obtained from the canonical instrument
locally.
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Upper bounding GYNI and LGYNI correlations

ℐLGYNI =
𝑝(11|11) + 𝑝𝐴(0|10) + 𝑝𝐵(0|01) + 1

4
≤ 0.8194 (tight)

ℐGYNI ≤ 𝛼0𝑝(00|00) + 𝛼1𝑝𝐴(1|01) + 𝛼2𝑝𝐵(1|10) triggers (0,0)
+𝛼0𝑝(10|01) + 𝛼1𝑝𝐴(0|00) + 𝛼2𝑝𝐵(1|11) triggers (0,1)
+𝛼0𝑝(01|10) + 𝛼1𝑝𝐴(1|11) + 𝛼2𝑝𝐵(0|00) triggers (1,0)
+𝛼0𝑝(11|11) + 𝛼1𝑝𝐴(0|10) + 𝛼2𝑝𝐵(0|01) triggers (1,1)
≤ 0.7592
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A slice of the set of probability distributions with ICO

Probabilities in OCB correlation [Oreshkov, Costa & Brukner (2012)], where Bob’s
setting is a pair of bits (𝑏, 𝑐).

• Causal probability distributions form a convex
polytope (the inner square);

• Probability distributions realized by ICO
processes does NOT form a polytope (the circle)

• Every unconstrained probability distribution
(outer square) can be realized in bistochastic quantum
theory [Chiribella and Liu (2022)].
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Potential improvements of our method

Better method?
Is there a hierarchy of SDP
relaxations (similar to the NPA
hierarchy in Bell nonlocality) for
the ICO-bound problem?

Broader method?
For computing Tsirelson bounds for correlations
with partially pre-defined causal structure;

Including the following as special cases:
• no-signalling causal structure: NPA hierarchy
• no restriction on causal structure: single-trigger

SDP
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Deriving ICO bounds from physical principles?

Physical principles in the context of Bell
inequalities:

• non-trivial communication complexity

• non-trivial nonlocal computation,

• information causality,

• macroscopic locality,

• local orthogonality.

van Dam, Ph.D. thesis (1999)
Brassard et al PRL (2006)
Brunner and Skrzypczyk PRL (2009)
Linden et al PRL (2007)
Pawlowski et al Nature (2009)
Navascués and Wunderlich (2010)
Fritz et al Nat. Comm. (2013)
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Device-independent quantum cryptography with indefinite
causality?

• self-testing process matrices and instruments;

• device-independent protocols beyond Bell scenarios, for example, DIQRNG under the
assumption of signalling causal structures (partially pre-defined causal structure, no
causal structure).
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Take-home messages

1. Quantum theory is compatible with behaviors violating causal inequalities; ICO
bounds of correlations represent a more complex problem than Tsirelson bounds in
Bell nonlocality;

2. For single-trigger correlations, ICO bounds can be saturated by a canonical choice
of instruments;

3. Single-trigger ICO bounds provide an SDP relaxation of the ICO-bound problem;

4. ICO bounds help to understand quantum theory and open up new possibilities of
device-independent quantum cryptography.

Thank you for your attention!
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